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ABSTRACT 

Traumatic brain injury (TBI) is responsible for a high prevalence of global death, disability, and morbidity, and 

the effects for patients and their families can be devastating, with even a mild, non-concussive injury able to have long-

term effects. Microglia, the innate immune cells resident in the central nervous system (CNS), respond swiftly after TBI 

and are important for reparation, but also secrete pro-inflammatory cytokines, which participate in inflammation. 

Heightened microglial activation can result in “primed” microglia and chronic neuroinflammation, which can lead to 

cognitive impairment and the development of progressive neurodegenerative diseases such as Alzheimer’s disease (AD), 

Parkinson’s disease (PD), or chronic traumatic encephalopathy (CTE). These disorders include the abnormal 

accumulation of phosphorylated tau proteins and amyloid-β (Aβ) peptide deposits in the brain, with studies finding 

neuroinflammation and microgliosis to be linked to neuronal damage, disease worsening, and outcome. Microglial 

manipulation and neuroimaging are being used to define the role of microglia in these neurodegenerative diseases, 

develop treatments, and distinguish the correct time frame for therapeutic intervention. 
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INTRODUCTION 

Traumatic brain injury (TBI) is defined by the Centers for Disease Control and Prevention as “a disruption in the 

normal function of the brain that can be caused by a bump, blow, or jolt to the head, or penetrating head injury” (1). 

Prevalent causes of TBIs include falls, motor vehicle accidents, strikes with objects, and assault (2). TBIs can affect 

anyone, but a higher incidence has been reported in children, adolescents, adults over 75 years of age, and males (3). 

In addition, individuals who play contact sports and military service members are at higher risk due to repetitive injury 

over a sustained time.  

TBIs are a major source of death and morbidity worldwide and can cause lifelong consequences. According to 

the Glasgow Coma Scale, injuries can be classified as mild, moderate, or severe, depending on the time of 

unconsciousness, mental state, and posttraumatic amnesia (4). The worldwide prevalence of TBI is great, considering 

that 2.8 million people were diagnosed in the United States alone in 2013 (2), but the true numbers are difficult to 

define as many mild cases go unreported.  

TBI can produce neuronal, functional, and inflammatory consequences. The inflammatory response following 

TBI is a mix of complex, superimposed mechanisms, and age, sex, mechanism and degree of injury, secondary insults, 

and genetic variation are all factors that can impact that event (5)(6). Even after mild injury, TBI can cause chronic 

neuroinflammation and lead to neuropsychiatric and neurodegenerative pathologies months and years after the injury, 
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a time of complex neuroinflammatory cascades. In addition, studies have shown that cognitive decline affects between

15 and 30% of TBI patients (7-9), and even subconcussive injury can result in long-term neurologic consequences

(10).

The immune system reacts to protect the body against injury and infection, which it performs by engaging in 

inflammatory challenges in response to noxious stimuli. After TBI, the immune response is essential for the repair 

process; however, an upregulated immune response can attack healthy cells and cause damaging, chronic 

neuroinflammation. 

The initial injury that occurred in TBI is considered the “primary injury”, and the multifaceted pathophysiological 

reactions that follow comprise the “secondary injury”, the period when neuroinflammatory processes are activated 

and may continue to become unresolved microglia-mediated inflammation (11). These primary and secondary TBI 

injuries can result in neuropathology (12). In addition, microglia-mediated inflammation can continue in this time of 

secondary injury long after the primary injury was incurred, contributing to chronic neuroinflammation, which has 

been seen in human TBI patients and animal models.   

The role of post-TBI neuroinflammation in the development and progression of neurodegenerative disorders has 

become an interesting and promising avenue of exploration and can be useful for treatment as recent research 

continues to shed light on their connection. This review aims to summarize the role of microglia in TBI-induced 

neuroinflammation, focusing on the role they play in Alzheimer’s Disease (AD), Parkinson’s Disease (PD), and 

chronic traumatic encephalopathy (CTE), progressive neurodegenerative disorders which are being studied for this 

theme. AD, PD, and CTE  include the following characterizations: abnormal accumulation of phosphorylated tau 

proteins and the formation of amyloid-β (Aβ) peptide deposits in the brain. 

Microglia activation in TBI 

Immune function is greatly influenced by TBI, with an increased inflammatory response, and repetitive events 

can be magnifying, adding more inflammation into an already activated system (13).  

Neuroinflammation occurs in the central nervous system (CNS), which comprises the brain, spinal cord, and optic 

nerves. Microglia, a glial component of the CNS, derive from the progenitors of mononuclear myeloid cells and 

respond rapidly after TBI has occurred, migrating to the source of injury within 30 minutes (14). Microglia are 

important for immune surveillance, mediating the innate immune capacity of the CNS with synaptic pruning, debris 

clearance, and tissue protection. They have a similar function to macrophages, and when activated, microglia secrete 

various harmful compounds to the body, including pro-inflammatory cytokines such as interleukin-6 (IL-6), and 

interleukin 1β (IL-1β), Tumor Necrosis Factor (TNF), and other inflammatory mediators (15). Innate immune 

inflammatory cytokines act on cytokine receptors and Toll-like receptors. 

Microglia are ubiquitous throughout the CNS and are “quiet” in their stable microenvironment. Any detected 

insult or stimuli can initiate immediate response, leading to “microglial activation”. Microglial “priming” occurs 

successively when microglia are sensitized and overly responsive to stimuli (16). After TBI, increased sensitization 

of microglia show raised levels of innate immune markers (17). The disruption to microglial homeostasis that occurs 

after a TBI can continue for months or years; this has been shown in different studies that showed increased Iba1, 

CD68+, MHCII, and CD68 labeled microglia after injury (18-21).  

Detection of activated microglia bound to positron emission tomography (PET)-detectable ligands can indicate 

the level of inflammation after TBI, which was seen up to 17 years after injury and was related to impaired cognitive 

effects (22)(23). In a study of former professional football players who endured repetitive TBI throughout their careers, 

activated microglia and macrophages were shown after retirement and before the decline in cognitive processing (24). 

In rodent models, increased microglia labeling and white matter damage affected hippocampal-dependent learning 

(19). 

Serum cytokines have also shown chronic hyper-activation following TBI, with elevated TNF in serum expressed 

post-injury, which has been linked to poor neuropsychiatric outcomes (25). The mitogen-activated protein kinase 

(MAPK) p38α responds to stress stimuli, controlling diverse cellular processes with unique functions (26). After 

diffuse TBI, p38α MAPK signaling in microglia has been seen to promote cytokine production, therefore perpetuating 

TBI-induced microglial activation; furthermore, microglial depletion in mice was associated with less synaptic protein 

loss and motor deficits, suggesting that this microglial signaling pathway may be related to the development of 

neuropathology post-TBI (12).  

Chronic neuroinflammation after TBI should be contained if microglia response can be confined to the acute TBI 

stage and limited during the secondary inflammatory stage, a process that can be neuroprotective (12).  

Prolonged disruption of microglial homeostasis induces neuroinflammation in the CNS and can lead to neuronal 

damage. However, microglial depletion has been shown to prevent detrimental gene suppression, not during the acute 

phase of TBI but during the dynamic inflammatory stage that follows.  

Microglia are plastic, changing in appearance depending on their function (27, 28). Neurons and microglia display 

dynamic structural associations after TBI in a species-dependent manner (29). In a porcine TBI model, microglia were 

activated within 15 minutes, and reactivity was focused proximal to individual injured neurons (30). CD68+ microglial 

cells increased in number from the first day following injury until the 28th (31). TBI also initiates rod microglia 
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morphology and unique phenotype (18)(32)(33). In a study by Ziebell et al., microglia, remodeling by structural

transition, were seen to become rod-shaped in the rodent cortex at one-week post-midline fluid percussion injury,

retained rod morphology for no less than 4 weeks, and the formation was dependent on the presence of preserved

neuronal tissue (18).

Post TBI, microglia-mediated inflammation can cause neuronal dysfunction, affecting plasticity and connectivity 

(23). However, a study by Witcher et al. showed that microglial depletion prevented detrimental gene suppression 

post-TBI, preventing TBI-associated cognitive impairments in mice (23).  

A history of TBI especially repeated events, is a risk factor for the development and severity of different 

neurodegenerative diseases (13). Chronic neuroinflammation, and the continuous overly active state of primed 

microglia that follows TBI, have been implicated in AD, PD, CTE, Huntington’s Disease, vascular dementia, and 

depression (34)(35). Microglial activation can lead to the production of Aβ, tau pathology, and neuroinflammation, 

along with a reduced release of neurotrophic factors, and subsequently, affect the quantity and function of neuronal 

cells. In addition, it appears that there is no clear initiator between microglia and the pathophysiological features such 

as tauopathy and Aβ deposition, and there are self-perpetuating cycles of inflammation.  

Alzheimer’s disease 

There is evidence to suggest that the immune system affects AD, an age-dependent progressive neurodegenerative 

disease that affects the CNS; however, further studies are needed to expand the connection (16)(36)(37).  

AD is the leading cause of neurodegenerative dementia in the elderly, contributing to 60-70% of cases (38). The 

clinical presentation is characterized by progressive memory decline, impaired executive function, impairment in 

cognitive domains, and behavioral and psychological symptoms (39). The pathophysiological features of AD include 

neurofibrillary tangles (NFT) of intracellular tau protein aggregates, Aβ plaques, gliosis, and neurodegeneration 

(40)(41)(42).  

A history of TBIs has been associated with dementia and is considered a risk factor for AD (43)(44). TBIs can 

lead to white matter, neuronal damage, p-tau, and Aβ deposition (45). Neuroinflammation occurs in AD by gliosis, 

the injury response in the CNS of activation and proliferation of microglia and astrocytes (39). Chronic 

neuroinflammation after TBI results in primed microglia, triggering inflammatory cascades causing neuronal damage, 

which may contribute to the onset and progression of AD (46, 47). 

Although the process is still unclear, Aβ has neurotoxic and inflammatory effects that play an important role in 

the progression of AD (48). Data has shown that microglial activation may follow Aβ deposition in AD (40), but Aβ 

deposition may also be induced by activated microglia (49-51), so the cause and effect relationship is unclear. 

However, there is a close association between Aβ deposition and activated microglia. Aβ adheres to microglia, 

promoting synthesization and secretion of inflammatory mediators and progressing the disease. At the same time, 

activated microglia can phagocytize and clear Aβ plaques (48). 

A similar association can be made for phosphorylated tau protein accumulation, another main hallmark of AD. 

Primed microglia and chronic neuroinflammation can boost tau protein and lead to the formation of NFT of 

intracellular tau protein aggregates (16). Human extracellular tau collection may be internalized by microglia, glial 

cells, and neurons may spread between cells and progress the disease (52). Concurrently, activated microglia also 

phagocytize phosphorylated tau protein and can release beneficial neurotrophic factors and antioxidants, limiting AD 

progression (53). The production of Aβ, phosphorylated tau, neuroinflammation, and neuronal damage caused by 

microglial activation is closely affiliated with AD pathogenesis (16).  

Parkinson’s disease 

PD is a progressive neurodegenerative disorder characterized by α-synuclein-containing Lewy bodies and the loss 

of dopaminergic neurons in the substantia nigra (SN). It is a prevalent movement disorder for older-aged adults, 

affecting 1% of those above 60 years of age (54). Clinical symptoms include resting tremors, impaired posture and 

balance, rigidity, and bradykinesia (55). Neuropathological features include the loss of dopaminergic neurons in the 

SN, intraneuronal inclusions called Lewy bodies, neuroinflammation, and gliosis (56). Dopaminergic neuron 

degeneration usually corresponds with the buildup of misfolded α-synuclein aggregates called Lewy bodies, which 

are spread throughout the SN and other brain regions (57). In addition, much evidence shows that microglial activation 

is a substantial pathological feature of PD and relative cognitive decline (58-64); however, microglia's exact role is 

still unclear.  

Postmortem PD brains have shown microglial activation and neuroimaging studies during disease development, 

and both the innate and adaptive immune systems have been implicated in PD. In 1988, McGeer et al. described 

microglia activation in PD when they discovered human leukocyte antigen DR (HLA-DR) expression in the SN of 

human brains (58). Further research showed TNF expression in SN (65) and raised levels of pro-inflammatory 

cytokines in the brain and cerebrospinal fluid (CSF) (66-68). In addition, and further supporting the involvement of 

neuroinflammation in PD, some non-steroidal anti-inflammatory drugs (NSAIDs) have been seen to have a protective 

effect on the incidence of PD in epidemiological studies (69-70).   

Aging and chronic psychological stress are the two main environmental risk factors for PD, and they are also 

responsible for increasing pro-inflammatory mediators within the CNS and altering microglial functions. Microglial 

activation and the release of pro-inflammatory cytokines, including TNF, IL-6, IL-1β, and interferon-γ (INF-γ), could 
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lead to neuronal loss (71) or could follow as a consequence, as the death of dopaminergic neurons can cause pro-

inflammatory microglial “phagoptotic” phenotypes.

Microglia respond early to α-synuclein in neurons, correlated with MHCII expression, and contribute to PD by 

inflammation and phagocytosis of α-synuclein, factors associated with neurodegeneration (72). Microglia may be 

important for toxic α-synuclein clearance in neurons; however, microglial activation may also harm the neurons and 

lead to their death, which can be seen by decreased glucose metabolism in different brain regions of PD patients (73). 

a-synuclein aggregation causes neuronal dysfunction and death, but microgliosis can occur before neuronal death, not

solely as a consequence (74). After neuron cell death, microglial activation is correlated with CD68 (75). Pro and anti-

inflammatory functions of microglia can create imbalance, leading to chronic neuroinflammation that could lead to

the onset and progression of PD (76).

Chronic traumatic encephalopathy 

CTE is a progressive neurodegenerative disease believed to be caused by repeated episodes of mild TBI and is 

often found in athletes, such as boxers and football players, and military veterans who experienced combat. It is 

difficult to describe the prevalence of CTE, especially considering that diagnosis is made post-mortem by 

histopathological brain analysis. However, due to the widespread global practice and growing popularity of combat 

sports where concussive and subconcussive blows are common, added to the global number of military service 

members engaging in combat, considering that just among U.S. Military service members, approximately 430,000 

TBIs were reported from 2000 to 2020 (77), it must be assumed that the incidence is extremely high. In a study of 85 

post-mortem brains of athletes donated for research, 68 showed signs of CTE (78). Another recent and larger 

epidemiological study found that 6% of population-based brains showed CTE (79). 

Clinical symptoms of CTE usually appear 8 to 10 years after repetitive mild TBI, and the patient may show 

aggression and irritability, impulsive behaviors, memory loss, and depression (80). As the disease progresses, 

dementia and parkinsonism may develop, and difficulties in speech and gait may present. It is a tauopathy 

characterized by hyperphosphorylated tau protein tangles, disseminated microgliosis, and astrocytosis (81). Some 

CTE cases, approximately 40%, showed Aβ plaques, which was age-dependent (82, 83). 

Studies continue to indicate that chronic neuroinflammation can lead to CTE (6). Rodent studies of repetitive mild 

TBI have shown that following injury, neuroinflammation, and glial changes occur before tau protein pathology 

(84)(85). Neuroinflammation has been linked with higher tau pathology in CTE, contributing to its development and 

progression, with microglial cells playing a role (86). Microglial reactivity is a common feature of CTE, along with 

the accumulation of abnormal tau by astrocytes and neurons, where it is irregularly distributed within sulci (81)(87).  

Repeated mild TBI can lead to chronic neuroinflammation and primed microglia, which release pro-inflammatory 

cytokine mediators. Studies have shown that increased density of CD68+ microglia in the brains of sports players was 

linked to CTE severity and that the time duration of repeated TBI was also associated with CD68 density (86). The 

chronic state of microglial activation may exacerbate tauopathy, initiating the formation of NFT and phosphorylated 

tau deposition, and tau can induce neuroinflammation in turn, as seen in rodent models, resulting in a self-perpetuating 

cycle of inflammation (88). However, it is still unclear which initiates the other, and further studies are needed to 

explore this relationship. 

Future therapeutic implications 

Neuroinflammation-based treatments for TBI are now being investigated, and with further clinical trials and 

research, targeting microglia activation could be beneficial. The first-stage inflammatory reaction following acute TBI 

is beneficial to help restore brain homeostasis. However, when chronically activated, primed microglia can harm the 

CNS, releasing pro-inflammatory molecules and causing secondary injury with neuronal damage that could lead to 

neurodegenerative pathologies. For this, medical management is targeted toward preventing the second-stage injury 

and limiting the harmful effects of primed microglia in chronic neuroinflammation.   

Research advances are unveiling new findings in the study of post-TBI neuroinflammation, and new therapeutic 

targets are being explored. In addition, research is being done to determine the critical periods for treatment.   

There is evidence showing the harmful effects of chronic neuroinflammation after TBI and the role of microglia 

during this secondary injury process. In some studies, microglial depletion was able to inhibit or stop this damage. 

Therefore, confining the microglial response to the acute, primary injury of TBI and limiting it during the 

neuroinflammatory secondary injury phase is a possible approach to limit neuroinflammation. This idea could be a 

potential therapeutic avenue for neuroprotection, although further research must be conducted (12).  

Clinical trials treating TBI patients with anti-inflammatory drugs have not shown great success, and limited 

success has only been achieved using progesterone in younger patients (89). In addition, because of the large possible 

variation in outcome after TBI and the complexity of immune activation, successful treatment must be targeted to 

inflammatory mediators and interindividual differences such as age, genetic predisposition, and history of secondary 

injuries. Finally, it must be initiated at the correct time frame (89).   

The manipulation of microglia activation and neuroimaging using PET and autoradiography are being used to 

identify the role that microglia play post-injury. In imaging, selective PET ligands for amyloid, tau, and 

neuroinflammation can provide insight into the post-TBI neurodegenerative process and help determine future 
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therapeutic approaches (6). One possible treatment approach is manipulating microglia and activating them to become

a beneficial phenotype rather than a destructive one (90).

Immunotherapy needs to be focused on the right moment, targeting the moment of positive immune activity to

aid reparation and debris clearance and then decreasing the negative damage of chronic inflammation afterward.

One positive achievement in treatment is aerobic exercise, which has displayed the importance of intervention

timing concerning benefits in neuroinflammation and neuroprotection. Post-TBI exercise intervention has shown

overall cognitive benefits in mild to moderate TBI patients, with improvements in cognitive functioning and

cardiorespiratory fitness (91). In a mouse study by Piao et al., the initiation of aerobic exercise after 5 weeks after

moderate TBI promoted neurogenesis, benefited cognitive recovery, and attenuated the inflammatory response. In the

same study, it was also seen that earlier initiation of exercise provided different results, with no cognitive benefits and

a neurotoxic pro-inflammatory response, opposing the classically held view that neuroprotection can only be achieved

with early intervention (92). However, previous training before TBI was also seen to provide a beneficial preventative

effect on the cerebral inflammatory response following severe TBI, an important discovery that implicates exercise

induces metabolic changes that can positively alter the long-term inflammation process following TBI and limit

neuronal damage (93).

The take-away message from these exercise studies, and the overall evidence so far, is that there are different time

frames for intervention during the inflammatory process following TBI, and interindividual differences and TBI

history are important modifying factors accounted for.

CONCLUSION 

TBI is a global source of death, disability, and morbidity and can have devastating long-term consequences for 

patients. It provokes an initial inflammatory response which can lead to secondary injury and chronic 

neuroinflammation with effects on cognitive functioning and the development of neurodegenerative diseases. In 

addition, a history of repeated TBI, even mild, puts a person at higher risk.  

Microglia respond to acute injury after TBI and are beneficial for reparation. However, the continuous state of 

primed microglia that follows can be destructive and cause neuronal dysfunction.   

In neurodegenerative diseases such as AD, PD, and CTE, characterized by abnormal accumulation of 

phosphorylated tau proteins and Aβ peptide deposits in the brain, neuroinflammation and microglial activation have 

been implicated in neuronal damage, disease worsening, and outcome.  

Genetic and pharmacological manipulations of microglia activation are now being used to unveil their significance 

in post-TBI inflammation, and neuroimaging studies are being used to define the role of microglia. The timing seems 

to be of the utmost importance in therapy, as early or late intervention has different effects on immune function, 

dependent on many specific patient factors. 

Because of the number of people affected by TBI worldwide and the correlation between neuroinflammation and 

neurodegenerative disease, it is highly important to continue research in this field to develop treatment options to 

improve patient outcomes.   
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