
www.biolife-publisher.it Eur J Musculoskel Dis 2023 Sep-Dec;12(3):95-117

Received: 23 August 2016 
Accepted: 12 October 2016 

Copyright:  
Biolife-Publisher.it © 2016 

ISSN: 2038-4106 
Copyright © by BIOLIFE 
This publication and/or article is for individual use only and may not be 
further reproduced without written permission from the copyright 
holder. Unauthorized reproduction may result in financial and other 
penalties. Disclosure: All authors report no conflicts of interest relevant 
to this article. 

European Journal of Musculoskeletal Diseases 2016; 5(2)July-December: e00002    www.biolife-publisher.it 

European Journal of Musculoskeletal 
Diseases ISSN 2038-4106/2016

Review

Resolution of a case of pes anserine bursitis with us-guided 
intrabursal infiltration of oxygen-ozone and MRI check in one month

G. Musella

Servizio di Radiologia, Fondazione Don Gnocchi Centro “E. Spalenza”, Rovato (BS), Italy

*Correspondence to: Giovanni Musella

ABSTRACT

The author presents the case of a patient afflicted by pes anserine bursitis completely resolved thanks to treatment 
with oxygen-ozone therapy. The complete recovery was confirmed by the control with Magnetic Resonance one month 
after the treatment.

The imaging-guided intra-bursal injection of the oxygen-ozone gas mixture can therefore be considered a valid 
therapeutic alternative in the treatment of inflammatory and overload joint pathology; as a method of simple and rapid 
implementation with low costs and without significant side effects or contraindications.
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INTRODUCTION

Pes anserine bursitis is part of the large group of so-called overload diseases. The inflammatory process affects 
the bursa’s anatomical complexity of the goose paw (sartorius, gracilis, and semitendinosus). The treatment of pes 
anserine bursitis finds as the first therapy the suspension of the activity that caused the inflammation, then uses not 
particularly aggressive therapies such as anti-inflammatory drugs, cryotherapy (for periods of 15 min), ultrasound 
physiotherapy, tecar therapy, strengthening of the quadriceps muscles, stretching of the internal flexor and rotator muscles 
of the knee. Oxygen-ozone therapy can be a valid and effective alternative in the treatment and resolution of the 
inflammatory process of pes anserine bursitis. In addition, the infiltration of the mixture directly into the bag, thanks to 
ultrasound control, allows the anti-edema effect of ozone optimally and effectively activates the mechanisms that oversee 
the anti-inflammatory response (1, 2).

Clinical Case
A 41-year-old male amateur basketball player underwent arthroscopic surgery for a medial meniscectomy in 

January 2016. In March, he came to our attention complaining of pain on the inside of the knee. The pain increased with 
movements, while a state of rest relieved the symptoms. Physical activity exacerbated the symptoms, and the pain was 
evoked by pressure palpation in the affected area. Following the poor results obtained after the targeted physical therapies 
and the administration of anti-inflammatory drugs, he was subjected to magnetic resonance imaging of the knee (3) (Fig. 
1).
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ABSTRACT

The dental implant is associated with high long-term predictability for fixed rehabilitation in edentulous patients. 
The aim of the present review was to evaluate the state-of-art of dental implant surface treatment and their effect on 
osseointegration. The Pubmed/Medline, EMBASE, Cochrane Library databases has been screened to identify the 
histologic studies regarding the dental implant surfaces in vivo. The screening process revealed a total of 3173 papers with 
a total of 24 articles obtained by the manual search. A total of 482 duplicates have been removed and 2691 papers were 
assessed for the full-text evaluation. A total of 2527 articles were removed after the eligibility process and 149 articles 
were evaluated for the descriptive analysis. The implant osseointegration process is a complex combination of events that 
is oriented to an intimate interface between the dental implant surface and the host peri-implant tissues that oriented to 
produce a functional ankylotic relationship between the components under the masticatory loading. 

KEYWORDS: implant, fixture, surface, osseointegration, bone

INTRODUCTION

The dental implant osseointegration represents the turning point for edentulous ridge rehabilitations due to the more 
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recent advances in titanium biocompatibility, enhanced surface treatment and novel high hydrophilic/bioactive materials 
(1), with a long-term implant success rates over 90% (2). The osteoconduction process is involved with the recruitment 
and migration of osteogenic cells to the implant surface determines the early events correlated to the dental implant 
osseointegration. This phase produces a mineralised osteoid matrix deposition representings the main non-functionalised 
new bone formation at the level of the bone-implant interface. These events are strictly correlated with several factors 
including the dental implant microtopography (3). Other key factors are represented by the implant material, macro design, 
surface chemistry, bone density, surgical technique, and implant loading protocol (4). In literature, the bone-implant contact 
(BIC) percentage represent one of the most reliable parameter for dental implant osseointegration, while values >50% are 
considered optimal for a long term stability findings (5). On the contrary, the main disadvantage of this parameter is dynamic 
and could potentially vary over time. In addition, the BIC% is a bidimensional parameter that could be determined only with 
retrieved biopsies and is not replicable. 

Also, the torque removal force has been suggested as an additional technique to assess the implant anchorage for research 
purposes evaluating the biomechanical behaviour of osseointegration (6). In this way, the roughness of a surface is one of the 
major factors contributing to implant stability, based on the assessment of the surface peaks and valleys. For this purpose, 
the arithmetic mean height deviation from a mean bi-dimensional plane (Ra); the Sa is considered in the case of a three-
dimensional evaluation (7). The “osseointegration” concept was introduced by Branemark et al. (1) as the direct contact 
between living bone and a functionally loaded implant surface without interposed soft tissue at the light microscope level (8). 

Today, titanium is the most common material for dental implants due to its low weight, high strength/weight ratio, 
low elasticity modulus, corrosion and wearing resistance, and biocompatibility (9). The most frequent titanium alloy 
(Ti6Al4V) is composed of 6% of aluminium and 4% vanadium (10). Lincks et al. (11) reported that the osteoblasts-like 
cells responded differently to cpTi and Ti6Al4V materials due to the alloy mosaicism and the surface chemistry. A passive 
surface oxide film around the titanium core (12) determines the interface generation between the titanium surface and the 
surrounding hard tissue. The oxide layer produces hydroxyl functional groups when exposed to the air environment (13). 
The hydroxyl functional groups dissociate when exposed to body fluid to generate an electric charge that is correlated to 
the pH of the fluids (13). In this way, the point of zero charge of rutile is 5.3, while the anatase point of zero charge is 6.2 
(14, 15). The TiO2 shows reported a neutral property. The hydroxyl concentration of TiO2 is relatively large, representing 
an advantage for the proteins and cytokines adsorption promotion (12). The machined surfaces of the implant device are 
provided only by decontamination after the turning procedure. 

Various treatments were proposed to improve the surface properties, taking advantage of rough interfaces with high implant 
stability and the surface contact area (6, 16, 17). In addition, rough surfaces seem to be effective in improving the osteogenic 
cell’s behaviour (18, 19), proliferation and differentiation (20, 21) due to the release of signal mediators, transforming growth 
factor beta, and prostaglandin E2 (PGE2) (21-24). The optimal roughness for dental implant surfaces range is approximately 1.5 
µm (25). Several methods have been suggested, such as modified surfaces, additive coating protocols, and subtractive methods, 
while today, the optimal surface type has not been defined. The present systematic reviews aimed to investigate the recent 
updates of bone-implant contact (BIC) effectiveness of different implant surface treatments.

MATERIALS AND METHODS

Article search methodology
The screening phase was conducted according  to the Standards for Reporting Qualitative Research principles (SRQR) 

and the PRISMA guidelines (26). The selection was based on a keyword strategy synthetised in Table I. 

 
 

  

Table I. Boolean search and keyword strategy. 
 Search Strategies 

Keywords 

Advanced keywords search:  
((dental AND (implant OR implants OR implantation OR 
implantology) AND (surface OR surfaces OR surface topography) 
AND (Histo*)) 

Databases Pubmed/Medline, EMBASE, Cochrane Library 

Table I. Boolean search and keyword strategy.
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recent advances in titanium biocompatibility, enhanced surface treatment and novel high hydrophilic/bioactive materials 
(1), with a long-term implant success rates over 90% (2). The osteoconduction process is involved with the recruitment 
and migration of osteogenic cells to the implant surface determines the early events correlated to the dental implant 
osseointegration. This phase produces a mineralised osteoid matrix deposition representings the main non-functionalised 
new bone formation at the level of the bone-implant interface. These events are strictly correlated with several factors 
including the dental implant microtopography (3). Other key factors are represented by the implant material, macro design, 
surface chemistry, bone density, surgical technique, and implant loading protocol (4). In literature, the bone-implant contact 
(BIC) percentage represent one of the most reliable parameter for dental implant osseointegration, while values >50% are 
considered optimal for a long term stability findings (5). On the contrary, the main disadvantage of this parameter is dynamic 
and could potentially vary over time. In addition, the BIC% is a bidimensional parameter that could be determined only with 
retrieved biopsies and is not replicable. 

Also, the torque removal force has been suggested as an additional technique to assess the implant anchorage for research 
purposes evaluating the biomechanical behaviour of osseointegration (6). In this way, the roughness of a surface is one of the 
major factors contributing to implant stability, based on the assessment of the surface peaks and valleys. For this purpose, 
the arithmetic mean height deviation from a mean bi-dimensional plane (Ra); the Sa is considered in the case of a three-
dimensional evaluation (7). The “osseointegration” concept was introduced by Branemark et al. (1) as the direct contact 
between living bone and a functionally loaded implant surface without interposed soft tissue at the light microscope level (8). 

Today, titanium is the most common material for dental implants due to its low weight, high strength/weight ratio, 
low elasticity modulus, corrosion and wearing resistance, and biocompatibility (9). The most frequent titanium alloy 
(Ti6Al4V) is composed of 6% of aluminium and 4% vanadium (10). Lincks et al. (11) reported that the osteoblasts-like 
cells responded differently to cpTi and Ti6Al4V materials due to the alloy mosaicism and the surface chemistry. A passive 
surface oxide film around the titanium core (12) determines the interface generation between the titanium surface and the 
surrounding hard tissue. The oxide layer produces hydroxyl functional groups when exposed to the air environment (13). 
The hydroxyl functional groups dissociate when exposed to body fluid to generate an electric charge that is correlated to 
the pH of the fluids (13). In this way, the point of zero charge of rutile is 5.3, while the anatase point of zero charge is 6.2 
(14, 15). The TiO2 shows reported a neutral property. The hydroxyl concentration of TiO2 is relatively large, representing 
an advantage for the proteins and cytokines adsorption promotion (12). The machined surfaces of the implant device are 
provided only by decontamination after the turning procedure. 

Various treatments were proposed to improve the surface properties, taking advantage of rough interfaces with high implant 
stability and the surface contact area (6, 16, 17). In addition, rough surfaces seem to be effective in improving the osteogenic 
cell’s behaviour (18, 19), proliferation and differentiation (20, 21) due to the release of signal mediators, transforming growth 
factor beta, and prostaglandin E2 (PGE2) (21-24). The optimal roughness for dental implant surfaces range is approximately 1.5 
µm (25). Several methods have been suggested, such as modified surfaces, additive coating protocols, and subtractive methods, 
while today, the optimal surface type has not been defined. The present systematic reviews aimed to investigate the recent 
updates of bone-implant contact (BIC) effectiveness of different implant surface treatments.

MATERIALS AND METHODS

Article search methodology
The screening phase was conducted according  to the Standards for Reporting Qualitative Research principles (SRQR) 

and the PRISMA guidelines (26). The selection was based on a keyword strategy synthetised in Table I. 
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The papers’ title and abstracts were assessed for an initial screening, and the manuscripts were limited to histological 
studies with bone-to-implant contact (BIC) outcomes. The full texts were finally collected and evaluated to assess the 
eligibility for the descriptive analysis.

Inclusion and exclusion criteria
The inclusion criteria for the eligibility synthesis were limited to histological studies that assessed bone-to-implant 

contact (BIC) outcomes from 1995 to today. The exclusion criteria were systematic and literature reviews, letters to the 
editor, in vitro and laboratory simulation, pilot studies, preliminary reports, no loading outcomes and early follow-up. The 
articles written in non-English language were excluded from the review.

RESULTS

Screening process 
The electronic database identification process revealed a total of 3173 and 24 articles screened trough a manual search. 

A total of 482 duplicates have been removed from the articles list, and 2691 articles have been submitted for the full-text 
screening process. A total of 2527 papers were excluded for the following reasons: 1302 for the wrong outcome, 668 for 
the wrong device, 259 for wrong study design, 147 for wrong publication type, 101 written in a foreign language, 34 for 
wrong study duration and 16 for the wrong study population.

Sandblasted surfaces
The sandblasting procedure was proposed by sandblasting the metal surface with gritting agents. The number and 

rotations speed, the flux pressure, and the granulometry of the agent particles (10, 27) determine the treatment. The 
sandblasting procedure increases the surface irregularity and the implant biomechanical characteristics. The most 
common sandblasting agents are aluminium oxide/alumina (Al2O3) and titanium oxide (TiO2). The primary studies 
concerning the sandblasted surfaces are summarised in Table II. The procedure can influence the adhesion, proliferation, 
and differentiation of osteoblasts (20, 28).

Moreover, the fibroblasts result in a more difficult adhesion to the implant surface and a lower soft tissue proliferation 
around the implant in favour of the new bone formation (27, 29). Using surfaces blasted with Al2O3 particles was 
investigated compared to turned titanium surfaces. In the literature, the sandblasted implants showed higher BIC than the 
machined (30). In another study, the machined implants with Sa of 0.96 μm were compared to different blasting sizes, and 
after 12 weeks, all blasted surfaces demonstrated higher BIC compared with machined surfaces. 
The blasting procedure leaves residual particles over the implant’s surface, which can modify the bone healing process. 
Some authors support that the presence of remaining particles may benefit osseointegration, catalysing this process (31); 
others support that aluminium ions are suspected to impair bone formation by a possible competitive action to calcium 
(32-35). TiO2 particle blasting was proposed to promote bone contact (27). Dental implants with TiO2 surface were 
compared to machined implants with a statistically significant higher removal torque compared to machined implants. 
No differences in BIC were detected (25). A combination of TiO2 blasted surface with fluoride ions has been proposed 
to improve the early osseointegration of dental implants (36). This method reported a bone-to-implant contact mean of 
>48% after 2 months of healing, which was higher than the blasting procedure alone (36). 
At the same time, the precise nature of multinucleated giant cells is not thoroughly investigated, while a histological study 
suggested a priming effect on osteoblast activity similar to the hypothetic role of osteoclasts (37). Additional studies focus 
on sandblasted implants (38-40). 

Plasma sprayed and plasma-chemical vapour surface
The plasma-sprayed treatments were studied in orthopaedics (41) and dental implants with no histological evidence 

of connective tissue infiltration at the interface level (42). Plasma-sprayed implants are obtained by spraying heat molten 
metal on the implant core, producing irregularly sized and shaped rounded particles and splats with valleys, pores and 
crevices (43). This treatment improves implant stability, bone growth (44), and higher surface contact area (10).
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This treatment has been successfully investigated in rabbits (45), monkeys (46, 47), and humans (48-51), in different 
functional loading conditions (52). In vivo, no significant differences were detected between plasma-spray vs. machined 
implant, with a BIC percentage ranging between 55.9% and 56.2% (53). An alkali modification of the plasma-spraying 

Table II. Comparative studies which used sandblasted implants. 

 

Author Implant surface Results Findings Experimental design 
Piattelli et al. (1998) 30 (1) Al2O3 blasted 

 
(2) Turned 

BIC values 
(1) 60%±1.4% 
(2) 51%±1.9% 

The blasted sites presented BIC 
values statistically higher in 

comparison to turned. 

Implants inserted in the 
femoral articulation of 

rabbits. 
 

Healing period: 8 weeks 
Piattelli et al. (1996)37 (1) Al2O3 blasted 

(2) Turned 
(3) Plasma-spray 

ACP, ALP 
activity  

(1), (2) and (3) 

No MGS activity was reported 
for (1) and (2). At 2 weeks, 
Plasma spray revealed MGS 

activity. 

Healing period: 2, 4 and 
weeks 

Wennerberg et al. 
(1998)38 

(1) Al2O3 blasted 
(25µm, 75µm, and  
250µm particles) 
 
(2) Turned 

BIC values 
(1) Ranging 

from 31 to 47% 
(2) Ranging 

from 18 to 23%. 

Blasted surfaces demonstrated 
more bone in contact to implant 

surface compared to turned 
surface. 

Implants inserted in the 
tibia of rabbits. 

 
Healing period: 12 weeks 

Wennerberg et al. 
(1996)31 

(1) Al2O3 blasted 
(25 µm particles) 
 
(2) TiO2 blasted 
(25 µm particles) 

BIC values 
(1) 49.2 % 
(2) 47.6 % 

 
Removal 
torque 

(1) 26.5 Ncm 
(2) 24.9 Ncm 

No statistically different values 
concerning torque removal BIC 

values between the surfaces 
blasted with the same size of 

particles. 

Implants inserted in the 
tibia of rabbits. 

 
Healing period: 12 weeks 

Wennerberg et al. 
(1995)25 

(1) TiO2 blasted 
(25 µm particles) 
 
(2) Turned 

BIC values 
(1) 40.9 % 
(2) 34.5 % 

 
Removal 
torque 

(1) 35.4 Ncm 
(2) 29.2 Ncm 

BIC values were not 
significantly different between 
the implants. However, TiO2 
blasted implants demanded a 
statistically significant greater 

removal torque force than turned 
implants. 

Implants inserted in the 
tibia of rabbits. 

 
Healing period: 12 weeks 

Gotfredsen et al. 
(1992)39 

(1) TiO2 blasted 
(10-53 µm 
particles) 
 
(2) Turned 

Removal 
torque 

(1) 150 Ncm 
(2) 60 Ncm 

BIC not significantly difference 
(data not shown), but, blasted 

implants presented higher 
removal torque values in 

comparison to turned sites. 

Implants were immediately 
placed, in dogs. 

 
No prosthetic 

rehabilitation was 
performed. 

Healing period: 12 weeks 
Ivanoff et al. (2001)40 (1) TiO2 blasted 

(25 µm particles) 
 
(2) Turned 

BIC values 
(1) 37 % 
(2) 9 % 

The analysis of the results 
revealed a significantly higher 
BIC for the blasted implants 

than turned groups. 

Microimplants were 
inserted in the ridge of 27 

patients. 
 

Mean healing period 
ranging from 3.9 to 6.3 

months. 
Rocci et al. (2008)36 (1) TiO2 blasted 

(25 µm particles) 
 
(2) TiO2 blasted 
with fluoride ions 

BIC values 
(1) 24.8 % 
(2) 48.3 % 

The implant surfaces grit-
blasted seems to produce a 

positive effect on 
osseointegration, the adding of 
fluoride ions could produce a 

sensible  
bioactive effect on the 

integration process. 

 
A total of 7 implants 
positioned in human 

mandible. 
 

Mean healing period 8 
weeks. 

Table II. Comparative studies which used sandblasted implants.
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This treatment has been successfully investigated in rabbits (45), monkeys (46, 47), and humans (48-51), in different 
functional loading conditions (52). In vivo, no significant differences were detected between plasma-spray vs. machined 
implant, with a BIC percentage ranging between 55.9% and 56.2% (53). An alkali modification of the plasma-spraying 

Table II. Comparative studies which used sandblasted implants. 

 

Author Implant surface Results Findings Experimental design 
Piattelli et al. (1998) 30 (1) Al2O3 blasted 

 
(2) Turned 

BIC values 
(1) 60%±1.4% 
(2) 51%±1.9% 

The blasted sites presented BIC 
values statistically higher in 

comparison to turned. 

Implants inserted in the 
femoral articulation of 

rabbits. 
 

Healing period: 8 weeks 
Piattelli et al. (1996)37 (1) Al2O3 blasted 

(2) Turned 
(3) Plasma-spray 

ACP, ALP 
activity  

(1), (2) and (3) 

No MGS activity was reported 
for (1) and (2). At 2 weeks, 
Plasma spray revealed MGS 

activity. 

Healing period: 2, 4 and 
weeks 

Wennerberg et al. 
(1998)38 

(1) Al2O3 blasted 
(25µm, 75µm, and  
250µm particles) 
 
(2) Turned 

BIC values 
(1) Ranging 

from 31 to 47% 
(2) Ranging 

from 18 to 23%. 

Blasted surfaces demonstrated 
more bone in contact to implant 

surface compared to turned 
surface. 

Implants inserted in the 
tibia of rabbits. 

 
Healing period: 12 weeks 

Wennerberg et al. 
(1996)31 

(1) Al2O3 blasted 
(25 µm particles) 
 
(2) TiO2 blasted 
(25 µm particles) 

BIC values 
(1) 49.2 % 
(2) 47.6 % 

 
Removal 
torque 

(1) 26.5 Ncm 
(2) 24.9 Ncm 

No statistically different values 
concerning torque removal BIC 

values between the surfaces 
blasted with the same size of 

particles. 

Implants inserted in the 
tibia of rabbits. 

 
Healing period: 12 weeks 

Wennerberg et al. 
(1995)25 

(1) TiO2 blasted 
(25 µm particles) 
 
(2) Turned 

BIC values 
(1) 40.9 % 
(2) 34.5 % 

 
Removal 
torque 

(1) 35.4 Ncm 
(2) 29.2 Ncm 

BIC values were not 
significantly different between 
the implants. However, TiO2 
blasted implants demanded a 
statistically significant greater 

removal torque force than turned 
implants. 

Implants inserted in the 
tibia of rabbits. 

 
Healing period: 12 weeks 

Gotfredsen et al. 
(1992)39 

(1) TiO2 blasted 
(10-53 µm 
particles) 
 
(2) Turned 

Removal 
torque 

(1) 150 Ncm 
(2) 60 Ncm 

BIC not significantly difference 
(data not shown), but, blasted 

implants presented higher 
removal torque values in 

comparison to turned sites. 

Implants were immediately 
placed, in dogs. 

 
No prosthetic 

rehabilitation was 
performed. 

Healing period: 12 weeks 
Ivanoff et al. (2001)40 (1) TiO2 blasted 

(25 µm particles) 
 
(2) Turned 

BIC values 
(1) 37 % 
(2) 9 % 

The analysis of the results 
revealed a significantly higher 
BIC for the blasted implants 

than turned groups. 

Microimplants were 
inserted in the ridge of 27 

patients. 
 

Mean healing period 
ranging from 3.9 to 6.3 

months. 
Rocci et al. (2008)36 (1) TiO2 blasted 

(25 µm particles) 
 
(2) TiO2 blasted 
with fluoride ions 

BIC values 
(1) 24.8 % 
(2) 48.3 % 

The implant surfaces grit-
blasted seems to produce a 

positive effect on 
osseointegration, the adding of 
fluoride ions could produce a 

sensible  
bioactive effect on the 

integration process. 

 
A total of 7 implants 
positioned in human 

mandible. 
 

Mean healing period 8 
weeks. 

Table II. Comparative studies which used sandblasted implants.
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technique by sodium hydroxide solutions at 40oC for 24 h can determine an oxide layer Ra = 17.6 μm) and 20 nm thickness 
(44). The main reported disadvantage of plasma-spray is the detachment of titanium after implant insertion. Franchi et 
al. (54) reported the particle detachment of plasma spray, sandblasted and acid-etched, and machined implants in sheep. 
The authors reported that the titanium particles were detected only in plasma-sprayed implants. This phenomenon can be 
related to the friction between the implant surface and host bone cavity during implant placement, but its implications are 
unclear. Recent non-thermal and argon-based plasma applications have been proposed for dental implants, reporting no 
significant changes in new bone formation compared to sandblasted dental implant (55-58). 

On the contrary, a significant increase in argon-based plasma-spray implant-bone contact was reported by Qiao et 
al. compared to sandblasted and acid-etched fixtures (59). Several studies increased the new bone formation of hybrid 
titanium-zirconia dental implants obtained through a novel plasma spray technique (60, 61). The microwave plasma-
chemical-vapour deposition (MWP-CVD) of diamond-coated Ti-Al6-V4 dental implants compared to Ti-Al6-V4 
implants have been investigated (62, 63). No differences in BICs, delamination, or particle-dissociation due to shearing 
forces have been detected (62). 

Acid-etched surfaces
The acid-etch implant was proposed to avoid the residues released from sandblasting, a non-uniform surface 

modification of the implant body (10). For this purpose, different acid-etching solutions have been proposed, such as 
chloridic (HCl), sulfuric (H2SO4), hydrofluoric (HF), and nitric (HNO3), in different combinations. The acid-etching 
process effectiveness is by the baseline roughness, acid composition, temperature, and etching time. The histologic 
assessment results have been evaluated in Tables III and IV. A study compared two different etching of solution HCl 
and H2SO4, reporting that the surfaces presented a homogeneous distribution of small 1-2 µm peaks and valleys and a 
removal torque 4 times higher for acid etched (6). The dual acid-etched procedure was proposed to obtain a macro- and 
micro-texture of the titanium surfaces (6) and higher platelet and osteogenic molecular signals (64, 65). Degidi et al. (66) 
reported histologically a mean BIC percentage of 61.3%, with no gaps or fibrous tissues present at the interface. Similar 
BIC results were reported after four months of healing on non-loaded implants (67). 

In immediate loading protocols, the mean BIC levels ranged between 78% and 85% in vivo in humans (68). In the 
posterior maxilla after 6 months of healing, the BIC values of dual acid-etched sites were statistically higher than in turned 
sites (~70%) (69). Different acid concentrations were evaluated by Cho et al. (70), reporting a removal torque for dual 
acid-etched implants statically higher compared to the machined surface. The removal torque of 2mm diameters triple-
etched micro-implants has been investigated by Pontes et al. (71), who reported an increase of the strength resistance 
>6Ncm after 8 weeks of healing. In a sheep study, Jinno et al. (72) reported that the dual-acid etch technique produces 
similar BIC findings to dual etching-sandblasting surfaces. Some authors associated the main findings for bone response 
to the dental implant macro-geometry (72-74). Halldin et al. reported that nano- and microtopography indicted by dual 
etching can potentiate the initial biomechanical behaviour, while for a more extended osseointegration period, the surface 
interlocking capacity seems more effective (75). On the contrary, several studies reported that the roughness scale seems 
to be effective for new bone formation (76, 77). 

A similar outcome was reported by Yoo et al. that highlighted higher BICs and removal torque resistance of dual-acid 
etched implants compared to grit blasted/acid etch with low bone remodelling rates (78). Also, others obtained similar 
results (79).

Sandblasted and acid-etched surfaces
The combination of sandblasting and acid-etching technique has been suggested to produce uniform scattered gaps 

and hole distribution and slightly less rough than the plasma-sprayed surface, which is characterised by profoundly 
irregular micro-texture and less favourable substrate for cell proliferation (80). The histological studies have been 
summarised in Tables V and VI. Higher torque removal values of sandblasted/acid-etch surfaces have been reported 
(+75%-125%) compared to acid-etched implants (81). Abrahamsson et al. (82) reported that the BIC values in dogs were 
significantly higher in sandblasted/acid-etched implants compared to machined surfaces. Similar results were observed in 
the comparative evaluation of sandblasted/acid-etched compared in plasma-sprayed implants(83). Sandblasted and acid-
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etched surfaces reported increased osteoconductive cell proliferation characteristics compared to plasma-spray implants 
(80, 84, 85). The histological findings of sandblasted/acid-etched reported after six months of healing in humans a mean 
BIC of 76.6 % (86). After 40 months, a 75.4 % BIC mean was observed on retrieved human implants (87). 

Some studies reported sufficient bone volume and density that sandblasted/acid-etched surfaces can present a success 
rate of 99 % after two years (88). The combination of acid-etching and ZrO2 particles sandblasting produces an increased 
bone deposition compared to plasma-sprayed and machined implants (54). Several authors reported that the depth and 
distribution of irregularities, the cavity morphology, and contaminating elements derived from the treatment procedures 

Table III. Comparative studies which used acid etched and plasma-sprayed implants.

Author Surface treatment Results Findings Experimental design
Klokkevold 
et al. 
(1997)6

(1) Acid-etched
(HCl / H2SO4)

(2) Turned

Removal torque
(1) 20.50 Ncm
(2) 4.95 Ncm

The resistance to torque 
removal was 4 times greater 
for acid etched implants in 
comparison to the turned 

surfaces.

Implants were inserted in 
the femur of rabbits.

Healing period: 2 months

Cho et al. 
(2003)70

(1) Acid-etched
(HF and HCl /
H2SO4)

(2) Turned

Removal torque
(1) 34.7 Ncm*
(2) 15.2 Ncm

Dual acid etched implants 
required a higher removal 

torque average force than the 
turned surface implants.

Implants were inserted in 
the tibia of rabbits.

Healing period: 12 weeks

Weng et al. 
200367

(1) Acid-etched
(Osseotite®)

(2) Turned
(ICE®)

BIC values
(1) 62.5 %
(2) 39.5 %

BIC values were 
significantly higher in dual 

acid-etched sites in 
comparison to turned sites.

Implants were inserted in 
areas with poor bone quality 

in the mandible of dogs.

Healing period: 4 months
Klokkevold 
et al. 
(2001)79

(1) Acid-etched
(HCl / H2SO4)

(2) Plasma-spray

(3) Turned

Removal torque
(1) 27.40 Ncm
(2) 59.23 Ncm
(3) 6.73 Ncm

Statistically significant 
differences were observed 
between acid-etched and 

turned implants, and 
between plasma-sprayed and 

turned implants.
However, differences 

between acid etched and 
plasma-sprayed were not 

statistically different.

Implants were inserted in 
the femur of rabbits.

Healing period: 3 months**

Pontes et al 
(2015) 71

(1) Triple Acid-
etched

Removal torque
(1) 3.3 ± 1.7 Ncm
(2) 2.2 ± 1.3 Ncm
(3) 6.7 ± 1.4 Ncm

The triple acid etching can 
create a promising and 
efficient surface for the 

process of osseointegration.

Healing period: 8 weeks
Implants were inserted in 

rats.

Rezende de 
Jesus et al.
(2017) 73

(1) Acid-etched
(2) Sandblasted and
Acid-etched

BIC values
2 weeks

(1) 19.57±13.57%
(2) 20.33±7.99%

4 weeks
(1) 40.25 ± 9.45%
(2) 42.80± 4.48%

Bone-to-implant contact and 
BD increased with time in 

both surface treatments 
implants

Implants were inserted in 
dogs

Healing period: 2 and 4 
weeks.

Carr et al. 
(2000)53

(1) Plasma-spray

(2) Turned

BIC values
(1) 55.9 %
(2) 56.2 %

No significant differences 
could be observed between 
groups concerning the BIC 

percentage.

Implants were inserted in 
the mandible of baboons.

No prosthetic rehabilitation 
was performed.

Healing period: 6 months.

* These results are referent to a 24% HF and 70% HCl / H2SO4 group.
** Data from the 1st and 2nd healing periods were not included in this table.

Table III. Comparative studies which used acid etched and plasma-sprayed implants.
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etched surfaces reported increased osteoconductive cell proliferation characteristics compared to plasma-spray implants 
(80, 84, 85). The histological findings of sandblasted/acid-etched reported after six months of healing in humans a mean 
BIC of 76.6 % (86). After 40 months, a 75.4 % BIC mean was observed on retrieved human implants (87). 

Some studies reported sufficient bone volume and density that sandblasted/acid-etched surfaces can present a success 
rate of 99 % after two years (88). The combination of acid-etching and ZrO2 particles sandblasting produces an increased 
bone deposition compared to plasma-sprayed and machined implants (54). Several authors reported that the depth and 
distribution of irregularities, the cavity morphology, and contaminating elements derived from the treatment procedures 

Table III. Comparative studies which used acid etched and plasma-sprayed implants.

Author Surface treatment Results Findings Experimental design
Klokkevold 
et al. 
(1997)6

(1) Acid-etched
(HCl / H2SO4)

(2) Turned

Removal torque
(1) 20.50 Ncm
(2) 4.95 Ncm

The resistance to torque 
removal was 4 times greater 
for acid etched implants in 
comparison to the turned 

surfaces.

Implants were inserted in 
the femur of rabbits.

Healing period: 2 months

Cho et al. 
(2003)70

(1) Acid-etched
(HF and HCl /
H2SO4)

(2) Turned

Removal torque
(1) 34.7 Ncm*
(2) 15.2 Ncm

Dual acid etched implants 
required a higher removal 

torque average force than the 
turned surface implants.

Implants were inserted in 
the tibia of rabbits.

Healing period: 12 weeks

Weng et al. 
200367

(1) Acid-etched
(Osseotite®)

(2) Turned
(ICE®)

BIC values
(1) 62.5 %
(2) 39.5 %

BIC values were 
significantly higher in dual 

acid-etched sites in 
comparison to turned sites.

Implants were inserted in 
areas with poor bone quality 

in the mandible of dogs.

Healing period: 4 months
Klokkevold 
et al. 
(2001)79

(1) Acid-etched
(HCl / H2SO4)

(2) Plasma-spray

(3) Turned

Removal torque
(1) 27.40 Ncm
(2) 59.23 Ncm
(3) 6.73 Ncm

Statistically significant 
differences were observed 
between acid-etched and 

turned implants, and 
between plasma-sprayed and 

turned implants.
However, differences 

between acid etched and 
plasma-sprayed were not 

statistically different.

Implants were inserted in 
the femur of rabbits.

Healing period: 3 months**

Pontes et al 
(2015) 71

(1) Triple Acid-
etched

Removal torque
(1) 3.3 ± 1.7 Ncm
(2) 2.2 ± 1.3 Ncm
(3) 6.7 ± 1.4 Ncm

The triple acid etching can 
create a promising and 
efficient surface for the 

process of osseointegration.

Healing period: 8 weeks
Implants were inserted in 

rats.

Rezende de 
Jesus et al.
(2017) 73

(1) Acid-etched
(2) Sandblasted and
Acid-etched

BIC values
2 weeks

(1) 19.57±13.57%
(2) 20.33±7.99%

4 weeks
(1) 40.25 ± 9.45%
(2) 42.80± 4.48%

Bone-to-implant contact and 
BD increased with time in 

both surface treatments 
implants

Implants were inserted in 
dogs

Healing period: 2 and 4 
weeks.

Carr et al. 
(2000)53

(1) Plasma-spray

(2) Turned

BIC values
(1) 55.9 %
(2) 56.2 %

No significant differences 
could be observed between 
groups concerning the BIC 

percentage.

Implants were inserted in 
the mandible of baboons.

No prosthetic rehabilitation 
was performed.

Healing period: 6 months.

* These results are referent to a 24% HF and 70% HCl / H2SO4 group.
** Data from the 1st and 2nd healing periods were not included in this table.

Table III. Comparative studies which used acid etched and plasma-sprayed implants.
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play an important role in cell behaviour (89). In different animal study models, the sandblasted and acid-etched surfaces 
seem to produce in animals very similar BICs (~60%) compared to RBM, acid treatments and micro-arc procedures 
with no significant differences (90-96). At the same time, Marinho et al. reported a significantly higher new bone contact 
compared to the comparison of machined implant surfaces (97). Similar results were obtained by Buser et al. (98). 

Nodized surfaces and micro-arc treatment
The oxidation technique has been proposed to modify the oxide layer properties and the surface biocompatibility (99), 

avoiding the deposit of grit particles (100). The anodised surfaces are obtained by a voltage application on the titanium 
surface in an electrolyte bath. The treated surface appeared with micro-pores of variable diameters without cytotoxicity 
(101). The removal torque of different thicknesses of anodised surfaces was investigated, which was significantly higher 
than that of smooth surfaces (99). 

In the rabbit model, anodised, anodised and hydrothermally treated, and machined implants were investigated, 
reporting BIC values ranging between 40% and 50% and removal torque differences between the study groups (102). 
Authors reported that differentiation and calcification occurred on rough and smooth surfaces, indicating that the porous 
microstructure could enhance cell proliferation (43). In literature, it was demonstrated that the voltage for the anodising 
technique could produce a sensible influence on osseointegration properties, while the optimal value seems to be at 
~550 V (103). In this way, the micro-roughness generated by anodic oxidation seems to significantly ameliorate BICs 
compared to sandblasted surfaces (104, 105) and machined implants (106). Moreover, using a super-hydrophilic surface 
of anodic oxidation implants has been proposed to potentiate this histological finding (107), while using biologically-
derived triterpenoids adjuvant coating seems to produce no significant effect on this parameter 108).  

In addition, the electrochemical anion sulphuric acid and phosphoric acid incorporation significantly affect BICs with 
an increase of ~200% histological bone contact (109). The micro-arc surface oxidation treatment has been proposed to 
improve the titanium dental implant. The biocompatibility of micro-arc oxidation has been tested by several authors, 
producing an acceleration and enhancement of the fixture’s osseointegration (90, 110–113). Dundar et al. (90) reported 
similar BIC means (~60%) comparing different surfaces RBM, SLA, micro-arc, and sandblasted-micro-arc treatment 
with no significant difference.

Hydroxyapatite-coated surfaces and ceramic-coating implants
Hydroxyapatite implants have been studied to improve bone-implant fixation due to an increased osteoblast activity 

to this contact and adhesion, proliferation, and differentiation (114). Histological findings of hydroxyapatite implant 

Table IV. Histologic studies in which acid etched implants were retrieved from humans.Table IV. Histologic studies in which acid etched implants were retrieved from humans. 
Author Surface treatment Results Findings Experimental design 
Testori et al. 
(2001)68 Acid etched  

(Osseotite®) 

BIC values 
ranging from 78% 

to 85% 

Implants were successfully 
used in immediately 

loaded protocol. 

Histologic analysis of two 
retrieved immediately loaded 

implants. 
 

Healing period: 4 months. 
Degidi et al. 
(2003)66 Acid etched  

(HCl and H2SO4) 
Mean BIC value 

61.3% 

No gaps or fibrous tissues 
were observed 
at the interface. 

Histologic analysis of two 
retrieved implants. 

 
No prosthetic rehabilitation 

was performed. 
Healing period: 6 months. 

Trisi et al. 
(2002)69 

(1) Acid etched 
(Osseotite®) 
 
(2) Turned 

BIC values 
(1) 72.35 % 
(2) 35.32 % 

BIC values in dual acid-
etched sites were 

statistically higher than in 
turned sites. 

Histologic analysis of 
implants inserted in the 
posterior maxilla of 11 

patients. 
 

Healing period: 6 months. 
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Table V. Comparative studies that used sandblasted and acid-etched implants.

Author Surface treatment Results Findings Experimental design
Abrahamsson 
et al. 
(2004)82

(1) Sand-blasted and
acid-etched

(2) Turned

- BIC values (data not shown)
were significantly greater in
sandblasted and acid-etched
sites than in turned surfaces

Implants were inserted in 
the mandible of dogs.

No prosthetic rehabilitation 
was performed.

Healing period: 1, 2, 4, 6, 8 
and 12 weeks.

Marinho et 
al. (2003)97

(1) Sand-blasted and
acid-etched

(2) Turned

- The SLA surfaces revealed
a higher bone response vs.

machined surfaces.

Implants were inserted in 
rats.

Healing period: 5, 15, 30, 
and 60 days

Coelho et al 
(2011) 57

(1) alumina-blasting
(2) biologic blasting
(3) plasma
(4) microblasted RBM
(5) Sand-blasted and
acid-etched (AB/AE)

BIC values 
(1) 40.13± 2.54%
(2) 37.23 ± 2.14%
(3) 38.56 ± 2.49 %
(4) 39.65± 2.27%
(5) 38.72± 1.44%

No significant differences of 
BIC were detected at 4 

weeks. An higher reoval 
torque was detected for 

RBM implants.

Implants were inserted in 
dogs.

Healing period: 4, weeks.

Cochran et 
al. (1998)83

(1) Sand-blasted and
acid-etched
(250-500μm corundum
particles, and etched
with HCl / H2SO4)

(2) Plasma-sprayed

BIC values 
(1) 71.68 %
(2) 58.88 %

The sandblasted and acid 
etched implants had a 

significantly greater BIC 
percentage than did the 

plasma-sprayed. However, 
no qualitative differences in 
bone tissue were observed 

between groups.

Implants were inserted in 
the mandible of dogs.

Loading period: 12 months
Healing period: 15 months

Buser et al. 
(1999)98

(1) Sandblasted and
acid-etched
(0.25–0.50 μm particles,
etched with HCl /
H2SO4)

(2) Plasma-sprayed

(3) Turned

Removal torque
(1) 1.43 Ncm
(2) 1.54 Ncm
(3) 0.26 Ncm

Statistically significant 
differences were observed 
between sandblasted and 
acid-etched and turned 
implants, and between 

plasma-sprayed and turned
implants.

However, differences 
between sandblasted and 
acid etched and plasma-

sprayed were not 
statistically different.

Implants were inserted in 
the maxilla of miniature 

pigs.

No prosthetic rehabilitation 
was performed.

Healing period: 12 weeks*

*Data from the 1st and 2nd healing periods were not included in this table.

Table V. Comparative studies that used sandblasted and acid-etched implants.

Table VI. Histologic studies in which sandblasted and acid-etched implants were retrieved from humans.

*Data from the 1st and 2nd healing periods were not included in this table.
Table VI. Histologic studies in which sandblasted and acid-etched implants were retrieved from humans.

Author Surface treatment Results Findings Experimental design
Hayakawa 
et al. 
(2002)86

Sandblasted 
and acid-etched 

(Straumann®)
76.6 %

Histologic analysis of one retrieved 
implant that was inserted in the 
palatal bone of the maxilla of a 

patient as anchorage for orthodontic 
treatment.

Healing period: 6 months
Sakakura et 
al. (2005)87

Sandblasted
and acid-etched 75.4 %

Bone surrounding 
the implant was uniformly 
and maturely structured.

The surrounding bone 
healed in a well-organized 
pattern and could not be 
differentiated from the 

original alveolus.

Histologic analysis of one retrieved 
implant of a patient.

Loading period: 40 months

BIC value

BIC value
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Table V. Comparative studies that used sandblasted and acid-etched implants.

Author Surface treatment Results Findings Experimental design
Abrahamsson 
et al. 
(2004)82

(1) Sand-blasted and
acid-etched

(2) Turned

- BIC values (data not shown)
were significantly greater in
sandblasted and acid-etched
sites than in turned surfaces

Implants were inserted in 
the mandible of dogs.

No prosthetic rehabilitation 
was performed.

Healing period: 1, 2, 4, 6, 8 
and 12 weeks.

Marinho et 
al. (2003)97

(1) Sand-blasted and
acid-etched

(2) Turned

- The SLA surfaces revealed
a higher bone response vs.

machined surfaces.

Implants were inserted in 
rats.

Healing period: 5, 15, 30, 
and 60 days

Coelho et al 
(2011) 57

(1) alumina-blasting
(2) biologic blasting
(3) plasma
(4) microblasted RBM
(5) Sand-blasted and
acid-etched (AB/AE)

BIC values 
(1) 40.13± 2.54%
(2) 37.23 ± 2.14%
(3) 38.56 ± 2.49 %
(4) 39.65± 2.27%
(5) 38.72± 1.44%

No significant differences of 
BIC were detected at 4 

weeks. An higher reoval 
torque was detected for 

RBM implants.

Implants were inserted in 
dogs.

Healing period: 4, weeks.

Cochran et 
al. (1998)83

(1) Sand-blasted and
acid-etched
(250-500μm corundum
particles, and etched
with HCl / H2SO4)

(2) Plasma-sprayed

BIC values 
(1) 71.68 %
(2) 58.88 %

The sandblasted and acid 
etched implants had a 

significantly greater BIC 
percentage than did the 

plasma-sprayed. However, 
no qualitative differences in 
bone tissue were observed 

between groups.

Implants were inserted in 
the mandible of dogs.

Loading period: 12 months
Healing period: 15 months

Buser et al. 
(1999)98

(1) Sandblasted and
acid-etched
(0.25–0.50 μm particles,
etched with HCl /
H2SO4)

(2) Plasma-sprayed

(3) Turned

Removal torque
(1) 1.43 Ncm
(2) 1.54 Ncm
(3) 0.26 Ncm

Statistically significant 
differences were observed 
between sandblasted and 
acid-etched and turned 
implants, and between 

plasma-sprayed and turned
implants.

However, differences 
between sandblasted and 
acid etched and plasma-

sprayed were not 
statistically different.

Implants were inserted in 
the maxilla of miniature 

pigs.

No prosthetic rehabilitation 
was performed.

Healing period: 12 weeks*

*Data from the 1st and 2nd healing periods were not included in this table.

Table V. Comparative studies that used sandblasted and acid-etched implants.

Table VI. Histologic studies in which sandblasted and acid-etched implants were retrieved from humans.

*Data from the 1st and 2nd healing periods were not included in this table.
Table VI. Histologic studies in which sandblasted and acid-etched implants were retrieved from humans.

Author Surface treatment Results Findings Experimental design
Hayakawa 
et al. 
(2002)86

Sandblasted 
and acid-etched 

(Straumann®)
76.6 %

Histologic analysis of one retrieved 
implant that was inserted in the 
palatal bone of the maxilla of a 

patient as anchorage for orthodontic 
treatment.

Healing period: 6 months
Sakakura et 
al. (2005)87

Sandblasted
and acid-etched 75.4 %

Bone surrounding 
the implant was uniformly 
and maturely structured.

The surrounding bone 
healed in a well-organized 
pattern and could not be 
differentiated from the 

original alveolus.

Histologic analysis of one retrieved 
implant of a patient.

Loading period: 40 months

BIC value

BIC value
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indicated a BIC range between 87.5%-97.4% (115). This coating technique reported high survival rates at medium- and 
long-term follow-ups (2, 116, 117). After 12 years of loading, the survival rate of hydroxyapatite implants was 93.2%, 
statistically increasing compared to titanium implants (2). After 10 years of loading, the hydroxyapatite implants reported 
a BIC range between 70.74%-86.23% (118). 

Piattelli et al. (119) reported a localised chronic suppurative bone infection associated with peri-implantitis in a 
hydroxyapatite-coated implant, where the coating appeared detached from the titanium surface. Different methods can 
be used for hydroxyapatite coating, such as coating/sintering, electrophoretic deposition, immersion coating, hot isostatic 
pressing, solution deposition, sputter coating, and thermal spraying techniques (120). Hydroxyapatite plasma-spraying 
was indicated to combine the hydroxyapatite characteristics and the bone-implant mechanical interlock associated with 
the plasma-spraying procedure. Higher BIC values were reported for hydroxyapatite implants than titanium plasma-spray 
implants and machined fixtures (121). The Resorbable Blast Material (122) also known as the technique of ion-beam-
assisted deposition (IBAD) (123, 124) has been proposed to improve the coating quality properties. 

In vivo, the BIC values were significantly higher in IBAD surfaces compared to blasted and machined implants. The 
authors suggested that the advantages of the HA-coated implants in the early healing period could be apparent, while the 
separation or fracture of the coating layer could be prevented. However, the resorption needs to be further investigated123. 
Svanborg et al. (125) investigated different hydroxyapatite (HA) nanocoating thicknesses on titanium grade Ti-6A1-4V 
implants of 15 mm in length and 3.85 mm in diameter in rabbits. 

The single layer-HA coating reported a mean Sa 0.91 (0.20) µmm while the double layer-HA coating showed a mean 
Sa 0.77 (0.19)  µmm125. After 9 weeks of healing, the single layer-HA coating reported higher values of removal torque 
(p<0.05) and at 2 weeks reported an increase of almost 5% of new bone formation compared with the control and the 
double layer-HA coating. After 9 weeks, the BIC for both groups was similar (~60%) (125). The advantage of ceramic-
coating implants has been described due to the high osteoconductivity of the surfaces, while these techniques can produce 
a surface biofunctionalisation that can increase the implant osseointegration (126-167). 

The surface functionalisation seems to maintain the implant roughness, while Jimbo et al. reported no significant 
differences between the smooth bioceramic surface and the rough bioceramic coated implants (142). In addition, other 
studies investigated different ceramic coatings such as calcium carbonate, ceramic brushite, glass fibres, phosphate-
containing polymers, magnesium-containing polymers, and calcium-phosphate (126-167). Granato et al. investigated the 
coating thickness and demonstrated that the optimal Ca- and P-derived bioceramic coating layer ranged between 300-500 

Table VII. Comparative studies which used anodized implants.

* Data from the 1st healing period, and an experimental group were not included in this table.

Table VII. Comparative studies which used anodized implants.
Author Surface treatment Results Findings Experimental design
Sul et al. 
(2002)99

(1) Anodized
(oxide thickness
approximately 200, 600,
800 or 1000 nm)

(2) Turned
(oxide thickness: 17.4 nm)

RReemmoovvaall  ttoorrqquuee  
(1) Ranging from

0.113 to 0.129
Nm

(2) 0.075 Nm

The preliminary results 
of this study suggest that 

the oxide thickness 
influence the bone tissue 

formation.

Implants were inserted in 
the tibia of rabbits.

Healing period: 6 weeks

Son et al. 
(2003)*102.

(1) Anodized

(2) Turned

RReemmoovvaall  ttoorrqquuee  
(1) 51.35 Ncm
(2) 35.28 Ncm

Difference between 
groups was not 

statistically significant 
concerning removal 

torque and BIC values 
(data not shown).

Implants were inserted in 
the tibia of rabbits.

Healing period: 12 weeks

Ivanoff et al 
(2003)113

(1) Anodized

(2) Turned

BBIICC  vvaalluueess  
(1) 34 %
(2) 13 %

BIC values were 
statistically higher in 

oxidized than in turned 
sites.

Histologic analysis of 
implants inserted in the 

ridge of 20 patients.

Mean healing period: 6.6 
months

* Data from the 1st healing period, and an experimental group were not included in this table.
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nm (150). Moreover, the fluorapatite and heated-hydroxyapatite coatings present a decreased respiration rate compared to 
hydroxyapatite implant surfaces (167).

Thermal oxidation and heat surface treatment 
The investigation of innovative procedures able to contrast surface wearing and successful bioactivity and 

osseointegration represents the current breakthrough in implantology. Thermal oxidation aims to create a highly crystalline 
oxide coating able to potentiate the interaction between the titanium surface and the host surrounding bone (168, 169). A 
700°C exposure for 1 hour by a controlled furnace of Ti6Al4V alloy can induce the formation of a rutile oxide layer that 
could improve the osteoblast attachment on the implant surface in vitro (170). In addition, the heat treatment at 800°C 
in the air for 1 minute also seems to increase the BICs in vivo of acid significantly etch Ti6Al4V implants (171). The Al 
obtained similar results (2) (3) abrasive particle blasting with thermochemical treatment in minipigs compared to SLA 
(shot blasting surface) (172). 

Quameya et al. reported that adding a supplemental fluoridic acid etch to the thermally oxidised surface did not 
significantly affect osseointegration compared to standard SLA surface implant (173). The heat-derived oxide layer has 
been studied by Kim et al. (174), which compared different oxide layer thicknesses of 20nm to 80nm and the additional 
treatment of CaP coating. The same authors detected no significant differences in BICs and ISQ at 5 weeks on dogs (174).

Zirconia implants and acrylic materials
Zirconia (zirconium oxide, ZrO2) is a ceramic material purposed as dental implant material due to its biocompatibility, 

esthetic properties, and mechanical behaviour, which are better than alumina (60, 61, 175-188). Zirconia is reported to 
present a bone contact similar to titanium implants189,190. The interface is composed of a proteoglycan layer that is 
thicker than titanium (191, 192). Zirconia implants are biocompatible, bioinert, and radiopaque, with high corrosion and 
wearing resistance, flexion and fracture (193-197). 

In rabbits, the BIC value of zirconia implants was 68.4% after 4 weeks with no foreign bone reaction and fibrous tissue 
infiltration at the level of the interfaces (198). Loaded zirconia implants were evaluated in monkeys, with BIC values 
ranging between 66%-81% (199). Zirconia implants submitted to Al2O3 sandblasting were compared to titanium (Al2O3 
sandblasting followed by H2O2 and HF etching reporting BIC values of 67.4% for zirconia, and 72.9% for titanium 
surfaces with no statistically significant differences (190). Various types of zirconia implants have been investigated in 
the literature, while the most investigated are yttria-stabilised tetragonal zirconia polycrystalline (3Y-TZP) and ceria-
stabilised zirconia-alumina nanocomposite (NanoZr) (176). 

Mijhatovic et al. investigated three different roughnesses of zirconia implants compared to sandblasted large grit 
and acid-etched titanium implants, showing no significant differences in total BICs after 10 weeks on dogs. The hybrid 
hydrophilic titanium-zirconium alloy (TiZr1317) revealed a lower removal torque at 2 weeks compared to standard 
titanium implants, while no differences were detected at 4 and 12 weeks. At 4 weeks, hybrid hydrophilic titanium-
zirconium alloy (TiZr1317) showed significantly higher BICs in the marrow area of 19.25% (179). Very few studies 
investigated in vivo the properties of plastic and acrylic resin implants (200). Okamatsu et al. (200) studied the hybrid 
titanium-plastic implants and evaluated a homogeneous 150- to 250-nm acrylic layer coating. The authors reported new 
bone formation in the test and control groups, with no direct bone contact with the plastic implant.

UV and biologically functionalised surfaces
In literature, photodynamically functionalised implant surfaces have been investigated (201-204). Mehl et al. (201) 

reported no significant differences between BICs and ISQ in a split-mouth study model using a high-energy UV-irradiation 
in epicrestally titanium implants. On the contrary, a significant increase in removal torque and BICs was reported by Shen 
et al. (203). The authors evaluated a different combination of SLA-surfaces treated by UV-bactericidal irradiation at 
15-20W, 0.1mW/Cm2 and 0.2mW/Cm2 (203). The UV photo-functionalisation seems effective, especially in the early 
phases of osseointegration (202), with a significant increase in bone contact and dental implant stability. This treatment 
seems to take a significant advantage when combined with biologically functionalised treatment with fibronectin and 
osteopontin (204, 205) due to a significant increase in the hydrophilicity of the surface.
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nm (150). Moreover, the fluorapatite and heated-hydroxyapatite coatings present a decreased respiration rate compared to 
hydroxyapatite implant surfaces (167).

Thermal oxidation and heat surface treatment 
The investigation of innovative procedures able to contrast surface wearing and successful bioactivity and 

osseointegration represents the current breakthrough in implantology. Thermal oxidation aims to create a highly crystalline 
oxide coating able to potentiate the interaction between the titanium surface and the host surrounding bone (168, 169). A 
700°C exposure for 1 hour by a controlled furnace of Ti6Al4V alloy can induce the formation of a rutile oxide layer that 
could improve the osteoblast attachment on the implant surface in vitro (170). In addition, the heat treatment at 800°C 
in the air for 1 minute also seems to increase the BICs in vivo of acid significantly etch Ti6Al4V implants (171). The Al 
obtained similar results (2) (3) abrasive particle blasting with thermochemical treatment in minipigs compared to SLA 
(shot blasting surface) (172). 

Quameya et al. reported that adding a supplemental fluoridic acid etch to the thermally oxidised surface did not 
significantly affect osseointegration compared to standard SLA surface implant (173). The heat-derived oxide layer has 
been studied by Kim et al. (174), which compared different oxide layer thicknesses of 20nm to 80nm and the additional 
treatment of CaP coating. The same authors detected no significant differences in BICs and ISQ at 5 weeks on dogs (174).

Zirconia implants and acrylic materials
Zirconia (zirconium oxide, ZrO2) is a ceramic material purposed as dental implant material due to its biocompatibility, 

esthetic properties, and mechanical behaviour, which are better than alumina (60, 61, 175-188). Zirconia is reported to 
present a bone contact similar to titanium implants189,190. The interface is composed of a proteoglycan layer that is 
thicker than titanium (191, 192). Zirconia implants are biocompatible, bioinert, and radiopaque, with high corrosion and 
wearing resistance, flexion and fracture (193-197). 

In rabbits, the BIC value of zirconia implants was 68.4% after 4 weeks with no foreign bone reaction and fibrous tissue 
infiltration at the level of the interfaces (198). Loaded zirconia implants were evaluated in monkeys, with BIC values 
ranging between 66%-81% (199). Zirconia implants submitted to Al2O3 sandblasting were compared to titanium (Al2O3 
sandblasting followed by H2O2 and HF etching reporting BIC values of 67.4% for zirconia, and 72.9% for titanium 
surfaces with no statistically significant differences (190). Various types of zirconia implants have been investigated in 
the literature, while the most investigated are yttria-stabilised tetragonal zirconia polycrystalline (3Y-TZP) and ceria-
stabilised zirconia-alumina nanocomposite (NanoZr) (176). 

Mijhatovic et al. investigated three different roughnesses of zirconia implants compared to sandblasted large grit 
and acid-etched titanium implants, showing no significant differences in total BICs after 10 weeks on dogs. The hybrid 
hydrophilic titanium-zirconium alloy (TiZr1317) revealed a lower removal torque at 2 weeks compared to standard 
titanium implants, while no differences were detected at 4 and 12 weeks. At 4 weeks, hybrid hydrophilic titanium-
zirconium alloy (TiZr1317) showed significantly higher BICs in the marrow area of 19.25% (179). Very few studies 
investigated in vivo the properties of plastic and acrylic resin implants (200). Okamatsu et al. (200) studied the hybrid 
titanium-plastic implants and evaluated a homogeneous 150- to 250-nm acrylic layer coating. The authors reported new 
bone formation in the test and control groups, with no direct bone contact with the plastic implant.

UV and biologically functionalised surfaces
In literature, photodynamically functionalised implant surfaces have been investigated (201-204). Mehl et al. (201) 

reported no significant differences between BICs and ISQ in a split-mouth study model using a high-energy UV-irradiation 
in epicrestally titanium implants. On the contrary, a significant increase in removal torque and BICs was reported by Shen 
et al. (203). The authors evaluated a different combination of SLA-surfaces treated by UV-bactericidal irradiation at 
15-20W, 0.1mW/Cm2 and 0.2mW/Cm2 (203). The UV photo-functionalisation seems effective, especially in the early 
phases of osseointegration (202), with a significant increase in bone contact and dental implant stability. This treatment 
seems to take a significant advantage when combined with biologically functionalised treatment with fibronectin and 
osteopontin (204, 205) due to a significant increase in the hydrophilicity of the surface.
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DISCUSSION

Several authors investigated the biological properties of dental implant surfaces under in vitro conditions. At the same time, 
this kind of research is consistent in investigating the specific cell response, the clinical relevance of these results is discussible, 
and the development of long-term clinical evaluations is fundamental. Different implant topographies seem to influence the 
outcome of dental implants, but the magnitude and clinical relevance of this influence are still being investigated. 

On the other hand, many studies are being published to investigate the viability of modified surfaces. Regarding the 
titanium alloy, a study performed in rabbits reported that the removal torque was statistically different after 6 months and 
12 months, where the cpTi implants were significantly more stable. The BIC means presented no significant differences 
between the materials (206). In another investigation, cpTi and Ti6Al4V dental implants were positioned in baboons, 
reporting that BIC means were significantly higher in cpTi and Ti6Al4V implants, but differences after six months were 
not significantly different (207). 

Even if the use of the alloy represents a mechanical advance compared to cpTi, biomechanical tests revealed that cpTi 
presented an increased stability. Moreover, the titanium implants, after the air exposure, can form an oxide layer all over 
the surface of 2–5 nm thickness. The oxide layer (208, 209) plays a key role in corrosion resistance, biocompatibility and 
implant osseointegration (210-212). The layer is mainly formed by TiO2 (213), and the crystalline structure, the thickness 
and stability of this layer varies according to the surfaces of the implant (99, 214, 215). 

Promising findings for dental implants concerning nitride titanium (TiN), nanostructured texture, laser-treated surfaces, 
and ceramic materials have been recently reported (188, 216). The nanostructured surfaces (1-100nm) could improve the 
early interface and bone-implant contact (217, 218). Authors reported that dogs presented a higher percentage of newly 
formed bone in contact with nanostructured implants than plasma-spray and machined implants (219, 220), and BIC 
values ranged between 55 and 96% in humans (221). 

Nitride titanium (TiN) was proposed to produce a surface less susceptible to the ions release. For this purpose, the 
physical vapour deposition technique can produce a thin TiN layer (~1μ) for an osseointegration quality similar to standard 
titanium implants. This layer increases corrosion resistance, lower bacterial adhesion, and a golden aspect of the implant 
surface (222-227). The laser ablation is a reproducible procedure for a controlled, micron-sized surface with topographical 
features on the flanks of the threads. Lasered implants demonstrated significantly higher BIC and removal torque peaks 
than machined implants (228, 229). Calcium phosphate and ceramic coating are correlated to a high chemical bonding 
property, similar to hydroxyapatite (86). Biphasic calcium phosphate (162, 230, 231) or tricalcium phosphates have been 
investigated as implant coating (232, 233). 

In conclusion, proper long-term studies have been published for TiO2 surfaces, but other surfaces are documented 
with a medium-term follow-up period (234). While clinicians should consider that several new treatment surfaces are 
constantly purposed and currently available in the market, long-term findings are necessary to comprehend their long-
term biological response.
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